
Sparse-Matrix Multiplication (SpMM) needs coalesced 
sparse tensors backward pass is inherently slow

Gather/Scatter (GS):
✓ input does not need to be coalesced
✓ can integrate central node and edge information

non-deterministic by nature on GPU

1 2 4 8 16 32 64 128 256
0

0.5

1

1.5

2

Average degree of 10 000 nodes

S
ec
on

d
s
fo
r
1
00
0
ru
n
s

1 2 4 8 16 32 64 128 256
0

0.5

1

1.5

2

Average degree of 10 000 nodes

S
ec
on

d
s
fo
r
1
00
0
ru
n
s

1 2 4 8 16 32 64 128 256
0

0.5

1

1.5

2

Average degree of 10 000 nodes

S
ec
on

d
s
fo
r
1
00
0
ru
n
s

1 2 4 8 16 32 64 128 256
0

0.5

1

1.5

2

Average degree of 10 000 nodes

S
ec
on

d
s
fo
r
1
00
0
ru
n
s

Coalesced GS Non-coalesced GS Coalesced SpMM Non-coalesced SpMM

Forward
Backward

An Intuitive Message Passing Interface based on Gather and Scatter Operations

Fast Graph Representation Learning with
Matthias Fey

Jan Eric Lenssen

 /rusty1s/pytorch_geometric!

✓ uniform implementations of over 25 GNN operators/models
✓ extendable via a simple Message Passing interface
✓ access to over 100 benchmark datasets
✓ dynamic batch-wise graph generation
✓ deterministic and differentiable pooling operators
✓ basic as well as more sophisticated readout functions
✓ automatic mini-batching for graphs with different sizes
✓ useful transforms for augmentation, point sampling, ...
✓ leverages dedicated CUDA kernels
✓ supports multi-GPUs
✓ thoroughly documented

A PyTorch Extension Library for Deep Learning on Graphs, Point Clouds and Manifolds

class MyOwnNet(Module):
 def __init__(self, in_channels, out_channels):
 self.conv1 = GCNConv(in_channels, 16)
 self.conv2 = GCNConv(16, out_channels)
 def forward(self, x, edge_index):
 x = relu(self.conv1(x, edge_index))
 return softmax(self.conv2(x, edge_index))

=<latexit sha1_base64="2wsinhV7OEj9020G2B+xBypL2+k=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokKehGKXjy2YD+gDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7qZ+6wmV5rF8MOME/YgOJA85o8ZK9ZteqexW3BnIMvFyUoYctV7pq9uPWRqhNExQrTuemxg/o8pwJnBS7KYaE8pGdIAdSyWNUPvZ7NAJObVKn4SxsiUNmam/JzIaaT2OAtsZUTPUi95U/M/rpCa89jMuk9SgZPNFYSqIicn0a9LnCpkRY0soU9zeStiQKsqMzaZoQ/AWX14mzfOKd1Fx65fl6m0eRwGO4QTOwIMrqMI91KABDBCe4RXenEfnxXl3PuatK04+cwR/4Hz+AI13jMM=</latexit>GNN
<latexit sha1_base64="CI11wRQyCjVHcaD1dIz8FN37/tg=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqeyqoMeiBz2VCvYDukvJptk2NMkuyaxYlv4NLx4U8eqf8ea/MW33oK0PBh7vzTAzL0wEN+C6305hZXVtfaO4Wdra3tndK+8ftEycasqaNBax7oTEMMEVawIHwTqJZkSGgrXD0c3Ubz8ybXisHmCcsECSgeIRpwSs5PvAnkDL7LZen/TKFbfqzoCXiZeTCsrR6JW//H5MU8kUUEGM6XpuAkFGNHAq2KTkp4YlhI7IgHUtVUQyE2Szmyf4xCp9HMXalgI8U39PZEQaM5ah7ZQEhmbRm4r/ed0Uoqsg4ypJgSk6XxSlAkOMpwHgPteMghhbQqjm9lZMh0QTCjamkg3BW3x5mbTOqt551b2/qNSu8ziK6Agdo1PkoUtUQ3eogZqIogQ9o1f05qTOi/PufMxbC04+c4j+wPn8AT8dkc8=</latexit> (

<latexit sha1_base64="ibbBNUaKTyiY+P477j1Ongs3iBE=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoOQKtypoGXQxsIigvmA5Ah7m7lkyd7esbsnhCM/wsZCEVt/j53/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RYqd27p2qI1X654tbcOcgq8XJSgRyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n83Ck5s8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrz2My6T1KBki0VhKoiJyex3MuAKmRETSyhT3N5K2IgqyoxNqGRD8JZfXiWt85p3UXMfLiv1mzyOIpzAKVTBgyuowx00oAkMxvAMr/DmJM6L8+58LFoLTj5zDH/gfP4AxqKPMQ==</latexit>

(
<latexit sha1_base64="ibbBNUaKTyiY+P477j1Ongs3iBE=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoOQKtypoGXQxsIigvmA5Ah7m7lkyd7esbsnhCM/wsZCEVt/j53/xk1yhSY+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWj2aSoB/RoeQhZ9RYqd27p2qI1X654tbcOcgq8XJSgRyNfvmrN4hZGqE0TFCtu56bGD+jynAmcFrqpRoTysZ0iF1LJY1Q+9n83Ck5s8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrz2My6T1KBki0VhKoiJyex3MuAKmRETSyhT3N5K2IgqyoxNqGRD8JZfXiWt85p3UXMfLiv1mzyOIpzAKVTBgyuowx00oAkMxvAMr/DmJM6L8+58LFoLTj5zDH/gfP4AxqKPMQ==</latexit>

G1 = (X1,A1)
<latexit sha1_base64="/4f4oqzwumtLQWMHEuGv2KoJrrc=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0WoUEqigm6EqgtdVrAPaEOYTCft0MkkzEyEEvoTbvwVNy4UcSu482+cpBG09cDAOefey9x7vIhRqSzryygsLC4trxRXS2vrG5tb5vZOS4axwKSJQxaKjockYZSTpqKKkU4kCAo8Rtre6Cqtt++JkDTkd2ocESdAA059ipHSlmtWewFSQ4xYcj1xbXgOK5nh+UlH6yr8URdaHbpm2apZGeA8sXNSBjkarvnZ64c4DghXmCEpu7YVKSdBQlHMyKTUiyWJEB6hAelqylFApJNkV03ggXb60A+FflzBzP09kaBAynHg6c50STlbS83/at1Y+WdOQnkUK8Lx9CM/ZlCFMI0I9qkgWLGxJggLqneFeIgEwkoHWdIh2LMnz5PWUc0+rlm3J+X6ZR5HEeyBfVABNjgFdXADGqAJMHgAT+AFvBqPxrPxZrxPWwtGPrML/sD4+AaMKJ3J</latexit>

G2 = (X2,A2)
<latexit sha1_base64="dfov2P6CI+3xnWRUZk79QHDm6mo=">AAACFXicbVDLSsNAFJ34rPUVdelmsAgVSkmqoBuh6kKXFewD2hAm00k7dDIJMxOhhP6EG3/FjQtF3Aru/BsnaQRtPTBwzrn3MvceL2JUKsv6MhYWl5ZXVgtrxfWNza1tc2e3JcNYYNLEIQtFx0OSMMpJU1HFSCcSBAUeI21vdJXW2/dESBryOzWOiBOgAac+xUhpyzUrvQCpIUYsuZ64NXgOy5nh+UlH6wr8URdaHblmyapaGeA8sXNSAjkarvnZ64c4DghXmCEpu7YVKSdBQlHMyKTYiyWJEB6hAelqylFApJNkV03goXb60A+FflzBzP09kaBAynHg6c50STlbS83/at1Y+WdOQnkUK8Lx9CM/ZlCFMI0I9qkgWLGxJggLqneFeIgEwkoHWdQh2LMnz5NWrWofV63bk1L9Mo+jAPbBASgDG5yCOrgBDdAEGDyAJ/ACXo1H49l4M96nrQtGPrMH/sD4+AaQ453M</latexit>

,
<latexit sha1_base64="IGCV2Y7WdMw0ewDDx7JsYKydgB8=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4kJKooMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju6nfekKleSwfzDhBP6IDyUPOqLFS/bxXKrsVdwayTLyclCFHrVf66vZjlkYoDRNU647nJsbPqDKcCZwUu6nGhLIRHWDHUkkj1H42O3RCTq3SJ2GsbElDZurviYxGWo+jwHZG1Az1ojcV//M6qQlv/IzLJDUo2XxRmApiYjL9mvS5QmbE2BLKFLe3EjakijJjsynaELzFl5dJ86LiXVbc+lW5epvHUYBjOIEz8OAaqnAPNWgAA4RneIU359F5cd6dj3nripPPHMEfOJ8/c7OMsg==</latexit>

A1
<latexit sha1_base64="m5h/ZikxV8bkdsdPq/GbMUXbrig=">AAAB83icbVBNS8NAFHypX7V+VT16WSyCp5KooMeqF48VrC00pWy2L+3SzSbsboQS+je8eFDEq3/Gm//GTZuDtg4sDDPv8WYnSATXxnW/ndLK6tr6RnmzsrW9s7tX3T941HGqGLZYLGLVCahGwSW2DDcCO4lCGgUC28H4NvfbT6g0j+WDmSTYi+hQ8pAzaqzk+xE1oyDMrqd9r1+tuXV3BrJMvILUoECzX/3yBzFLI5SGCap113MT08uoMpwJnFb8VGNC2ZgOsWuppBHqXjbLPCUnVhmQMFb2SUNm6u+NjEZaT6LATuYZ9aKXi/953dSEV72MyyQ1KNn8UJgKYmKSF0AGXCEzYmIJZYrbrISNqKLM2JoqtgRv8cvL5PGs7p3X3fuLWuOmqKMMR3AMp+DBJTTgDprQAgYJPMMrvDmp8+K8Ox/z0ZJT7BzCHzifP9b6kYs=</latexit>

A2
<latexit sha1_base64="g8AkL+gmOxCzrWHPDKkBZF7Z0tc=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuqG5cV7AM6Q8mkmTY0kxmSjFCG/oYbF4q49Wfc+Tdm2llo64HA4Zx7uScnSATXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrG24E6yWKkSgQrBtM7nK/+8SU5rF8NNOE+REZSR5ySoyVPC8iZhyE2c1s0BhUa07dmQOvErcgNSjQGlS/vGFM04hJQwXRuu86ifEzogyngs0qXqpZQuiEjFjfUkkipv1snnmGz6wyxGGs7JMGz9XfGxmJtJ5GgZ3MM+plLxf/8/qpCa/9jMskNUzSxaEwFdjEOC8AD7li1IipJYQqbrNiOiaKUGNrqtgS3OUvr5JOo+5e1J2Hy1rztqijDCdwCufgwhU04R5a0AYKCTzDK7yhFL2gd/SxGC2hYucY/gB9/gDYfpGM</latexit>

X2
<latexit sha1_base64="/lk4imzV0U+1WCJVARn0EGQTzPM=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqApZTKdtEMnkzBzI5TQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJXe53nrg2IlaPOE14P6IjJULBKFrJ9yOK4yDMurNBfVCpujV3DrJKvIJUoUBzUPnyhzFLI66QSWpMz3MT7GdUo2CSz8p+anhC2YSOeM9SRSNu+tk884ycW2VIwljbp5DM1d8bGY2MmUaBncwzmmUvF//zeimGN/1MqCRFrtjiUJhKgjHJCyBDoTlDObWEMi1sVsLGVFOGtqayLcFb/vIqaddr3mXNfbiqNm6LOkpwCmdwAR5cQwPuoQktYJDAM7zCm5M6L86787EYXXOKnRP4A+fzB/ufkaM=</latexit>

X1
<latexit sha1_base64="c4w6BonQ+RhlbJ0R0tjWJrreIZw=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQq6LLoxmUF+4AmlMn0ph06mYSZiVBCf8ONC0Xc+jPu/BunbRbaemDgcM693DMnTAXXxnW/ndLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqhlSj4BJbhhuB3VQhjUOBnXB8N/M7T6g0T+SjmaQYxHQoecQZNVby/ZiaURjl3Wnf61drbt2dg6wSryA1KNDsV7/8QcKyGKVhgmrd89zUBDlVhjOB04qfaUwpG9Mh9iyVNEYd5PPMU3JmlQGJEmWfNGSu/t7Iaaz1JA7t5CyjXvZm4n9eLzPRTZBzmWYGJVscijJBTEJmBZABV8iMmFhCmeI2K2EjqigztqaKLcFb/vIqaV/Uvcu6+3BVa9wWdZThBE7hHDy4hgbcQxNawCCFZ3iFNydzXpx352MxWnKKnWP4A+fzB/obkaI=</latexit>

0, . . . , 0
<latexit sha1_base64="RHQzV2KPSaxHpKvbyTMwGBDTDOg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBQykbFeyx4MVjBfsBTSibzaZdutmE3Y1QQv+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6SCa4Pxt1Pa2Nza3invVvb2Dw6PqscnXZ1kirIOTUSi+gHRTHDJOoYbwfqpYiQOBOsFk7u533tiSvNEPpppyvyYjCSPOCXGSh6uI0+EidF1hIfVGm7gBdA6cQtSgwLtYfXLCxOaxUwaKojWAxenxs+JMpwKNqt4mWYpoRMyYgNLJYmZ9vPFzTN0YZUQRYmyJQ1aqL8nchJrPY0D2xkTM9ar3lz8zxtkJmr6OZdpZpiky0VRJpBJ0DwAFHLFqBFTSwhV3N6K6JgoQo2NqWJDcFdfXifdq4Z73cAPN7VWs4ijDGdwDpfgwi204B7a0AEKKTzDK7w5mfPivDsfy9aSU8ycwh84nz8cbJBk</latexit>

1, . . . , 1
<latexit sha1_base64="m30naG5P40YwYlobiwIxzv5ewNU=">AAAB83icbVBNS8NAEN3Ur1q/qh69LBbBQymJCvZY8OKxgv2AJpTNZtMu3eyG3YlQQv+GFw+KePXPePPfuG1z0NYHA4/3ZpiZF6aCG3Ddb6e0sbm1vVPereztHxweVY9PukZlmrIOVULpfkgME1yyDnAQrJ9qRpJQsF44uZv7vSemDVfyEaYpCxIykjzmlICVfK+OfREpMHXsDas1t+EugNeJV5AaKtAeVr/8SNEsYRKoIMYMPDeFICcaOBVsVvEzw1JCJ2TEBpZKkjAT5IubZ/jCKhGOlbYlAS/U3xM5SYyZJqHtTAiMzao3F//zBhnEzSDnMs2ASbpcFGcCg8LzAHDENaMgppYQqrm9FdMx0YSCjaliQ/BWX14n3auGd91wH25qrWYRRxmdoXN0iTx0i1roHrVRB1GUomf0it6czHlx3p2PZWvJKWZO0R84nz8ff5Bm</latexit>

X0
1

<latexit sha1_base64="/VDtkHINUbsaimwCFIOXOrpKw1E=">AAAB/nicbVDLSsNAFL3xWeurKq7cDBbBVUlU0GXRjcsK9gFNDJPppB06mYSZiVBCwF9x40IRt36HO//GSZuFth4YOJxzL/fMCRLOlLbtb2tpeWV1bb2yUd3c2t7Zre3td1ScSkLbJOax7AVYUc4EbWumOe0lkuIo4LQbjG8Kv/tIpWKxuNeThHoRHgoWMoK1kfzaoRthPQrCrJc/ZG4iWURz3/FrdbthT4EWiVOSOpRo+bUvdxCTNKJCE46V6jt2or0MS80Ip3nVTRVNMBnjIe0bKnBElZdN4+foxCgDFMbSPKHRVP29keFIqUkUmMkirJr3CvE/r5/q8MrLmEhSTQWZHQpTjnSMii7QgElKNJ8YgolkJisiIywx0aaxqinBmf/yIumcNZzzhn13UW9el3VU4AiO4RQcuIQm3EIL2kAgg2d4hTfryXqx3q2P2eiSVe4cwB9Ynz/BY5X8</latexit>

X0
2

<latexit sha1_base64="4eKfd6w25JjhbH4zUa2Ia7Ijt6Q=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1gEVyWpgi6LblxWsA9oYphMJ+3QmUmYmQglBPwVNy4Ucet3uPNvnLRZaOuBgcM593LPnDBhVGnH+bYqK6tr6xvVzdrW9s7unr1/0FVxKjHp4JjFsh8iRRgVpKOpZqSfSIJ4yEgvnNwUfu+RSEVjca+nCfE5GgkaUYy0kQL7yONIj8Mo6+cPmZdIykkeNAO77jScGeAycUtSByXagf3lDWOcciI0Zkipgesk2s+Q1BQzkte8VJEE4QkakYGhAnGi/GwWP4enRhnCKJbmCQ1n6u+NDHGlpjw0k0VYtegV4n/eINXRlZ9RkaSaCDw/FKUM6hgWXcAhlQRrNjUEYUlNVojHSCKsTWM1U4K7+OVl0m023POGc3dRb12XdVTBMTgBZ8AFl6AFbkEbdAAGGXgGr+DNerJerHfrYz5ascqdQ/AH1ucPwueV/Q==</latexit>

optional
readoutassignment vector

New features to come. Stay tuned! 😎licenselicense MITMIT PRsPRs welcomewelcome

íx1

íx2

íx3

íx4 �
�
íx1, íx2, íe2,1

�

�
�
íx1, íx3, íe3,1

�

�
�
íx1, íx4, íe4,1

�
gather (I)

íx®1scatter_’ (I)
�

Published as a workshop paper at ICLR 2019

FAST GRAPH REPRESENTATION LEARNING WITH
PYTORCH GEOMETRIC

Matthias Fey & Jan E. Lenssen
Department of Computer Graphics
TU Dortmund University
44227 Dortmund, Germany
{matthias.fey,janeric.lenssen}@udo.edu

ABSTRACT

We introduce PyTorch Geometric, a library for deep learning on irregularly struc-
tured input data such as graphs, point clouds and manifolds, built upon PyTorch. In
addition to general graph data structures and processing methods, it contains a va-
riety of recently published methods from the domains of relational learning and 3D
data processing. PyTorch Geometric achieves high data throughput by leveraging
sparse GPU acceleration, by providing dedicated CUDA kernels and by introduc-
ing e�cient mini-batch handling for input examples of di�erent size. In this work,
we present the library in detail and perform a comprehensive comparative study of
the implemented methods in homogeneous evaluation scenarios.

1 INTRODUCTION

Graph Neural Networks (GNNs) recently emerged as a powerful approach for representation learning
on graphs, point clouds and manifolds (Bronstein et al., 2017; Kipf & Welling, 2017). Similar to the
concepts of convolutional and pooling layers on regular domains, GNNs are able to (hierarchically)
extract localized embeddings by passing, transforming, and aggregating information (Bronstein et al.,
2017; Gilmer et al., 2017; Battaglia et al., 2018; Ying et al., 2018; Morris et al., 2019).

However, implementing GNNs is challenging, as high GPU throughput needs to be achieved on
highly sparse and irregular data of varying size. Here, we introduce PyTorch Geometric (PyG), a
geometric deep learning extension library for PyTorch (Paszke et al., 2017) which achieves high
performance by leveraging dedicated CUDA kernels. Following a simple message passing API, it
bundles most of the recently proposed convolutional and pooling layers into a single and unified
framework. All implemented methods support both CPU and GPU computations and follow an
immutable data flow paradigm that enables dynamic changes in graph structures through time. PyG
is released under the MIT license and is available on GitHub.1 It is thoroughly documented and
provides accompanying tutorials and examples as a first starting point.2

2 OVERVIEW

In PyG, we represent a graph G = (X , (I ,E)) by a node feature matrix X À RNùF and a sparse
adjacency tuple (I ,E), where I À N2ùE encodes edge indices in COOrdinate (COO) format and
E À REùD (optionally) holds D-dimensional edge features. All user facing APIs, e.g., data load-
ing routines, multi-GPU support, data augmentation or model instantiations are heavily inspired by
PyTorch to keep them as familiar as possible.

Neighborhood Aggregation. Generalizing the convolutional operator to irregular domains is typ-
ically expressed as a neighborhood aggregation or message passing scheme (Gilmer et al., 2017)

íx®i = �

H

íxi, ’
jÀN (i)

�
�

íxi, íxj , íej,i
�

I

(1)

1GitHub repository: https://github.com/rusty1s/pytorch_geometric
2Documentation: https://rusty1s.github.io/pytorch_geometric

1

sparse COO format differentiable functions, e.g., MLPs

add/mean/max

class MyOwnConv(MessagePassing):
 def __init__(self, ...):
 super(MyOwnConv, self).__init__('add')

 def forward(self, x, edge_index, e=None):
 return self.propagate(edge_index, x=x, e=e)

 def message(self, x_i, x_j, e):

Published as a workshop paper at ICLR 2019

Table 2: Graph classification.

Method MUTAG PROTEINS COLLAB IMDB- REDDIT-
BINARY BINARY

Fl
at

GCN 74.6 ± 7.7 73.1 ± 3.8 80.6 ± 2.1 72.6 ± 4.5 89.3 ± 3.3
SAGE 74.9 ± 8.7 73.8 ± 3.6 79.7 ± 1.7 72.4 ± 3.6 89.1 ± 1.9
GIN-0 85.7 ± 7.7 72.1 ± 5.1 79.3 ± 2.7 72.8 ± 4.5 89.6 ± 2.6
GIN-✏ 83.4 ± 7.5 72.6 ± 4.9 79.8 ± 2.4 72.1 ± 5.1 90.3 ± 3.0

H
ie

r. Graclus 77.1 ± 7.2 73.0 ± 4.1 79.6 ± 2.0 72.2 ± 4.2 88.8 ± 3.2
topk 76.3 ± 7.5 72.7 ± 4.1 79.7 ± 2.2 72.5 ± 4.6 87.6 ± 2.4
Di�Pool 85.0 ± 10.3 75.1 ± 3.5 78.9 ± 2.3 72.6 ± 3.9 92.1 ± 2.6

G
lo

ba
l SAGE w/o JK 73.7 ± 7.8 72.7 ± 3.6 79.6 ± 2.4 72.1 ± 4.4 87.9 ± 1.9

GlobalAttention 74.6 ± 8.0 72.5 ± 4.5 79.6 ± 2.2 72.3 ± 3.8 87.4 ± 2.5
Set2Set 73.7 ± 6.9 73.6 ± 3.7 79.6 ± 2.3 72.2 ± 4.2 89.6 ± 2.4
SortPool 77.3 ± 8.9 72.4 ± 4.1 77.7 ± 3.1 72.4 ± 3.8 74.9 ± 6.7

Table 3: Point cloud classification.
Method ModelNet10
MPNN 92.07
PointNet++ 92.51
EdgeCNN 92.62
SplineCNN 92.65
PointCNN 93.28

Table 4: Training runtime comparison.

Dataset Method DGL DGL PyGDB SPMV

Cora GCN 4.19s 0.32s 0.25s
GAT 6.31s 5.36s 0.80s

CiteSeer GCN 3.78s 0.34s 0.30s
GAT 5.61s 4.91s 0.88s

PubMed GCN 12.91s 0.36s 0.32s
GAT 18.69s 13.76s 2.42s

MUTAG RGCN 18.81s 2.40s 2.14s

(Bianchi et al., 2019), SGC (Wu et al., 2019), GCN (Kipf & Welling, 2017) and GAT (Veli�kovi�
et al., 2018) operators follow closely behind.

Graph Classification. We report the average accuracy of 10-fold cross validation on a number of
common benchmark datasets (cf. Table 2) where we randomly sample a training fold to serve as a
validation set. We only make use of discrete node features. In case they are not given, we use one-hot
encodings of node degrees as feature input. For all experiments, we use the global mean operator
to obtain graph-level outputs. Inspired by the Jumping Knowledge framework (Xu et al., 2018), we
compute graph-level outputs after each convolutional layer and combine them via concatenation.
For evaluating the (global) pooling operators, we use the GraphSAGE operator as our baseline. We
omit Jumping Knowledge when comparing global pooling operators, and hence report an additional
baseline based on global mean pooling. For each dataset, we tune (1) the number of hidden units
À {16, 32, 64, 128} and (2) the number of layers À {2, 3, 4, 5} with respect to the validation set.

Due to standardized evaluations and network architectures, not all results are aligned with their o�-
cial reported values. For example, except for Di�Pool (Ying et al., 2018), (global) pooling operators
do not perform as benefically as expected to their respective (flat) counterparts, especially when
baselines are enhanced by Jumping Knowledge (Xu et al., 2018). However, the potential of more
sophisticated approaches may not be well-reflected on these simple benchmark tasks (Cai & Wang,
2018). Among the flat GNN approaches, the GIN layer (Xu et al., 2019) generally achieves the best
results.

Point Cloud Classification. We evaluate various point cloud methods on ModelNet10 (Wu et al.,
2015) where we uniformly sample 1,024 points from mesh surfaces based on face area (cf. Table 3).
As hierarchical pooling layers, we use the iterative farthest point sampling algorithm followed by a
new graph generation based on a larger query ball (PointNet++ (Qi et al., 2017), MPNN (Gilmer
et al., 2017; Simonovsky & Komodakis, 2017) and SplineCNN (Fey et al., 2018)) or based on a fixed

4

An easy-to-use Testbed for Evaluating new Research Ideas with Competitive Runtimes

Published as a workshop paper at ICLR 2019

Table 1: Semi-supervised node classification with both fixed and random splits.

Method Cora CiteSeer PubMed
Fixed Random Fixed Random Fixed Random

Cheby 81.4 ± 0.7 77.8 ± 2.2 70.2 ± 1.0 67.7 ± 1.7 78.4 ± 0.4 75.8 ± 2.2
GCN 81.5 ± 0.6 79.4 ± 1.9 71.1 ± 0.7 68.1 ± 1.7 79.0 ± 0.6 77.4 ± 2.4
GAT 83.1 ± 0.4 81.0 ± 1.4 70.8 ± 0.5 69.2 ± 1.9 78.5 ± 0.3 78.3 ± 2.3
SGC 81.7 ± 0.1 80.2 ± 1.6 71.3 ± 0.2 68.7 ± 1.6 78.9 ± 0.1 76.5 ± 2.4
ARMA 82.8 ± 0.6 80.7 ± 1.4 72.3 ± 1.1 68.9 ± 1.6 78.8 ± 0.3 77.7 ± 2.6
APPNP 83.3 ± 0.5 82.2 ± 1.5 71.8 ± 0.5 70.0 ± 1.4 80.1 ± 0.2 79.4 ± 2.2

Mini-batch Handling. Our framework supports batches of multiple graph instances (of potentially
di�erent size) by automatically creating a single (sparse) block-diagonal adjacency matrix and con-
catenating feature matrices in the node dimension. Therefore, neighborhood aggregation methods
can be applied without modification, since no messages are exchanged between disconnected graphs.
In addition, an automatically generated assignment vector ensures that node-level information is not
aggregated across graphs, e.g., when executing global aggregation operators.

Processing of Datasets. We provide a consistent data format and an easy-to-use interface for the
creation and processing of datasets, both for large datasets and for datasets that can be kept in memory
during training. In order to create new datasets, users just need to read/download their data and
convert it to the PyG data format in the respective process method. In addition, datasets can be
modified by the use of transforms, which take in separate graphs and transform them, e.g., for
data augmentation, for enhancing node features with synthetic structural graph properties (Cai &
Wang, 2018), to automatically generate graphs from point clouds or to sample point clouds from
meshes.

PyG already supports a lot of common benchmark datasets often found in literature which are au-
tomatically downloaded and processed on first instantiation. In detail, we provide over 60 graph
kernel benchmark datasets3 (Kersting et al., 2016), e.g., PROTEINS or IMDB-BINARY, the cita-
tion graphs Cora, CiteSeer, PubMed and Cora-Full (Sen et al., 2008; Bojchevski & Günnemann,
2018), the Coauthor CS/Physics and Amazon Computers/Photo datasets from Shchur et al. (2018),
the molecule datasets QM7b (Montavon et al., 2013) and QM9 (Ramakrishnan et al., 2014), the
protein-protein interaction graphs from Hamilton et al. (2017), and the temporal datasets Bitcoin-
OTC (Kumar et al., 2016) ICEWS (Boschee et al., 2015), GDELT (Leetaru & Schrodt, 2013). In
addition, we provide embedded datasets like MNIST superpixels (Monti et al., 2017), FAUST (Bogo
et al., 2014), ModelNet10/40 (Wu et al., 2015), ShapeNet (Chang et al., 2015), COMA (Ranjan et al.,
2018), and the PCPNet dataset from Guerrero et al. (2018).

3 EMPIRICAL EVALUATION

We evaluate the correctness of the implemented methods by performing a comprehensive compara-
tive study in homogeneous evaluation scenarios. Descriptions and statistics of all used datasets can
be found in Appendix B. For all experiments, we tried to follow the hyperparameter setup of the
respective papers as closely as possible. The individual experimental setups can be derived and all
experiments can be replicated from the code provided at our GitHub repository.4

Semi-supervised Node Classification. We perform semi-supervised node classification (cf. Ta-
ble 1) by reporting average accuracies of (a) 100 runs for the fixed train/val/test split from Kipf &
Welling (2017), and (b) 100 runs of randomly initialized train/val/test splits as suggested by Shchur
et al. (2018), where we additionally ensure uniform class distribution on the train split.

Nearly all experiments show a high reproducibility of the results reported in the respective papers.
However, test performance is worse for all models when using random data splits. Among the ex-
periments, the APPNP operator (Klicpera et al., 2019) generally performs best, while the ARMA

3Kernel datasets: http://graphkernels.cs.tu-dortmund.de
4
https://github.com/rusty1s/pytorch_geometric/benchmark

3

Published as a workshop paper at ICLR 2019

Table 1: Semi-supervised node classification with both fixed and random splits.

Method Cora CiteSeer PubMed
Fixed Random Fixed Random Fixed Random

Cheby 81.4 ± 0.7 77.8 ± 2.2 70.2 ± 1.0 67.7 ± 1.7 78.4 ± 0.4 75.8 ± 2.2
GCN 81.5 ± 0.6 79.4 ± 1.9 71.1 ± 0.7 68.1 ± 1.7 79.0 ± 0.6 77.4 ± 2.4
GAT 83.1 ± 0.4 81.0 ± 1.4 70.8 ± 0.5 69.2 ± 1.9 78.5 ± 0.3 78.3 ± 2.3
SGC 81.7 ± 0.1 80.2 ± 1.6 71.3 ± 0.2 68.7 ± 1.6 78.9 ± 0.1 76.5 ± 2.4
ARMA 82.8 ± 0.6 80.7 ± 1.4 72.3 ± 1.1 68.9 ± 1.6 78.8 ± 0.3 77.7 ± 2.6
APPNP 83.3 ± 0.5 82.2 ± 1.5 71.8 ± 0.5 70.0 ± 1.4 80.1 ± 0.2 79.4 ± 2.2

Mini-batch Handling. Our framework supports batches of multiple graph instances (of potentially
di�erent size) by automatically creating a single (sparse) block-diagonal adjacency matrix and con-
catenating feature matrices in the node dimension. Therefore, neighborhood aggregation methods
can be applied without modification, since no messages are exchanged between disconnected graphs.
In addition, an automatically generated assignment vector ensures that node-level information is not
aggregated across graphs, e.g., when executing global aggregation operators.

Processing of Datasets. We provide a consistent data format and an easy-to-use interface for the
creation and processing of datasets, both for large datasets and for datasets that can be kept in memory
during training. In order to create new datasets, users just need to read/download their data and
convert it to the PyG data format in the respective process method. In addition, datasets can be
modified by the use of transforms, which take in separate graphs and transform them, e.g., for
data augmentation, for enhancing node features with synthetic structural graph properties (Cai &
Wang, 2018), to automatically generate graphs from point clouds or to sample point clouds from
meshes.

PyG already supports a lot of common benchmark datasets often found in literature which are au-
tomatically downloaded and processed on first instantiation. In detail, we provide over 60 graph
kernel benchmark datasets3 (Kersting et al., 2016), e.g., PROTEINS or IMDB-BINARY, the cita-
tion graphs Cora, CiteSeer, PubMed and Cora-Full (Sen et al., 2008; Bojchevski & Günnemann,
2018), the Coauthor CS/Physics and Amazon Computers/Photo datasets from Shchur et al. (2018),
the molecule datasets QM7b (Montavon et al., 2013) and QM9 (Ramakrishnan et al., 2014), the
protein-protein interaction graphs from Hamilton et al. (2017), and the temporal datasets Bitcoin-
OTC (Kumar et al., 2016) ICEWS (Boschee et al., 2015), GDELT (Leetaru & Schrodt, 2013). In
addition, we provide embedded datasets like MNIST superpixels (Monti et al., 2017), FAUST (Bogo
et al., 2014), ModelNet10/40 (Wu et al., 2015), ShapeNet (Chang et al., 2015), COMA (Ranjan et al.,
2018), and the PCPNet dataset from Guerrero et al. (2018).

3 EMPIRICAL EVALUATION

We evaluate the correctness of the implemented methods by performing a comprehensive compara-
tive study in homogeneous evaluation scenarios. Descriptions and statistics of all used datasets can
be found in Appendix B. For all experiments, we tried to follow the hyperparameter setup of the
respective papers as closely as possible. The individual experimental setups can be derived and all
experiments can be replicated from the code provided at our GitHub repository.4

Semi-supervised Node Classification. We perform semi-supervised node classification (cf. Ta-
ble 1) by reporting average accuracies of (a) 100 runs for the fixed train/val/test split from Kipf &
Welling (2017), and (b) 100 runs of randomly initialized train/val/test splits as suggested by Shchur
et al. (2018), where we additionally ensure uniform class distribution on the train split.

Nearly all experiments show a high reproducibility of the results reported in the respective papers.
However, test performance is worse for all models when using random data splits. Among the ex-
periments, the APPNP operator (Klicpera et al., 2019) generally performs best, while the ARMA

3Kernel datasets: http://graphkernels.cs.tu-dortmund.de
4
https://github.com/rusty1s/pytorch_geometric/benchmark

3

Runtimes of 200
epoch training

procedures on a
single GPU in

comparison to the
DeepGraphLibrary:

✓ much faster than the inherently sequential Degree
Bucketing (DB) approach

✓ major GAT runtime improvements due to own
optimized sparse softmax kernels

Published as a workshop paper at ICLR 2019

Table 2: Graph classification.

Method MUTAG PROTEINS COLLAB IMDB- REDDIT-
BINARY BINARY

Fl
at

GCN 74.6 ± 7.7 73.1 ± 3.8 80.6 ± 2.1 72.6 ± 4.5 89.3 ± 3.3
SAGE 74.9 ± 8.7 73.8 ± 3.6 79.7 ± 1.7 72.4 ± 3.6 89.1 ± 1.9
GIN-0 85.7 ± 7.7 72.1 ± 5.1 79.3 ± 2.7 72.8 ± 4.5 89.6 ± 2.6
GIN-✏ 83.4 ± 7.5 72.6 ± 4.9 79.8 ± 2.4 72.1 ± 5.1 90.3 ± 3.0

H
ie

r. Graclus 77.1 ± 7.2 73.0 ± 4.1 79.6 ± 2.0 72.2 ± 4.2 88.8 ± 3.2
topk 76.3 ± 7.5 72.7 ± 4.1 79.7 ± 2.2 72.5 ± 4.6 87.6 ± 2.4
Di�Pool 85.0 ± 10.3 75.1 ± 3.5 78.9 ± 2.3 72.6 ± 3.9 92.1 ± 2.6

G
lo

ba
l SAGE w/o JK 73.7 ± 7.8 72.7 ± 3.6 79.6 ± 2.4 72.1 ± 4.4 87.9 ± 1.9

GlobalAttention 74.6 ± 8.0 72.5 ± 4.5 79.6 ± 2.2 72.3 ± 3.8 87.4 ± 2.5
Set2Set 73.7 ± 6.9 73.6 ± 3.7 79.6 ± 2.3 72.2 ± 4.2 89.6 ± 2.4
SortPool 77.3 ± 8.9 72.4 ± 4.1 77.7 ± 3.1 72.4 ± 3.8 74.9 ± 6.7

Table 3: Point cloud classification.
Method ModelNet10
MPNN 92.07
PointNet++ 92.51
EdgeCNN 92.62
SplineCNN 92.65
PointCNN 93.28

Table 4: Training runtime comparison.

Dataset Method DGL DGL PyGDB GS

Cora GCN 4.19s 0.32s 0.25s
GAT 6.31s 5.36s 0.80s

CiteSeer GCN 3.78s 0.34s 0.30s
GAT 5.61s 4.91s 0.88s

PubMed GCN 12.91s 0.36s 0.32s
GAT 18.69s 13.76s 2.42s

MUTAG RGCN 18.81s 2.40s 2.14s

(Bianchi et al., 2019), SGC (Wu et al., 2019), GCN (Kipf & Welling, 2017) and GAT (Veli�kovi�
et al., 2018) operators follow closely behind.

Graph Classification. We report the average accuracy of 10-fold cross validation on a number of
common benchmark datasets (cf. Table 2) where we randomly sample a training fold to serve as a
validation set. We only make use of discrete node features. In case they are not given, we use one-hot
encodings of node degrees as feature input. For all experiments, we use the global mean operator
to obtain graph-level outputs. Inspired by the Jumping Knowledge framework (Xu et al., 2018), we
compute graph-level outputs after each convolutional layer and combine them via concatenation.
For evaluating the (global) pooling operators, we use the GraphSAGE operator as our baseline. We
omit Jumping Knowledge when comparing global pooling operators, and hence report an additional
baseline based on global mean pooling. For each dataset, we tune (1) the number of hidden units
À {16, 32, 64, 128} and (2) the number of layers À {2, 3, 4, 5} with respect to the validation set.

Due to standardized evaluations and network architectures, not all results are aligned with their o�-
cial reported values. For example, except for Di�Pool (Ying et al., 2018), (global) pooling operators
do not perform as benefically as expected to their respective (flat) counterparts, especially when
baselines are enhanced by Jumping Knowledge (Xu et al., 2018). However, the potential of more
sophisticated approaches may not be well-reflected on these simple benchmark tasks (Cai & Wang,
2018). Among the flat GNN approaches, the GIN layer (Xu et al., 2019) generally achieves the best
results.

Point Cloud Classification. We evaluate various point cloud methods on ModelNet10 (Wu et al.,
2015) where we uniformly sample 1,024 points from mesh surfaces based on face area (cf. Table 3).
As hierarchical pooling layers, we use the iterative farthest point sampling algorithm followed by a
new graph generation based on a larger query ball (PointNet++ (Qi et al., 2017), MPNN (Gilmer
et al., 2017; Simonovsky & Komodakis, 2017) and SplineCNN (Fey et al., 2018)) or based on a fixed

4

