Fast Graph Representation Learning with **Matthias Fey** Jan Eric Lenssen #### A PyTorch Extension Library for Deep Learning on Graphs, Point Clouds and Manifolds - ✓ uniform implementations of over 25 GNN operators/models → - extendable via a simple Message Passing interface - access to over 100 benchmark datasets - dynamic batch-wise graph generation - deterministic and differentiable pooling operators - ✓ basic as well as more sophisticated readout functions - ✓ automatic mini-batching for graphs with different sizes - ✓ useful transforms for augmentation, point sampling, ... - leverages dedicated CUDA kernels - supports multi-GPUs - thoroughly documented ``` class MyOwnNet(Module): def __init__(self, in_channels, out_channels): self.conv1 = GCNConv(in_channels, 16) self.conv2 = GCNConv(16, out_channels) def forward(self, x, edge_index): x = relu(self.conv1(x, edge_index)) return softmax(self.conv2(x, edge_index)) ``` ### An Intuitive Message Passing Interface based on Gather and Scatter Operations def message(self, x_i, x_j, e): Sparse-Matrix Multiplication (SpMM) needs coalesced sparse tensors -- backward pass is inherently slow #### Gather/Scatter (GS): - input does not need to be coalesced - can integrate central node and edge information - × non-deterministic by nature on GPU ## An easy-to-use Testbed for Evaluating new Research Ideas with Competitive Runtimes | Method | Cora | | CiteSeer | | PubMed | | |--------|----------------|----------------|----------------|----------------|----------------|----------------| | | Fixed | Random | Fixed | Random | Fixed | Random | | GCN | 81.5 ± 0.6 | 79.4 ± 1.9 | 71.1 ± 0.7 | 68.1 ± 1.7 | 79.0 ± 0.6 | 77.4 ± 2.4 | | GAT | 83.1 ± 0.4 | 81.0 ± 1.4 | 70.8 ± 0.5 | 69.2 ± 1.9 | 78.5 ± 0.3 | 78.3 ± 2.3 | | SGC | 81.7 ± 0.1 | 80.2 ± 1.6 | 71.3 ± 0.2 | 68.7 ± 1.6 | 78.9 ± 0.1 | 76.5 ± 2.4 | | ARMA | 82.8 ± 0.6 | 80.7 ± 1.4 | 72.3 ± 1.1 | 68.9 ± 1.6 | 78.8 ± 0.3 | 77.7 ± 2.6 | | APPNP | 83.3 ± 0.5 | 82.2 ± 1.5 | 71.8 ± 0.5 | 70.0 ± 1.4 | 80.1 ± 0.2 | 79.4 ± 2.2 | | | Method | MUTAG | PROTEINS | COLLAB | IMDB-
BINARY | REDDIT-
BINARY | |-------|---|---|---|---|---|--| | Flat | GCN
SAGE
GIN-0
GIN- ϵ | 74.6 ± 7.7 74.9 ± 8.7 85.7 ± 7.7 83.4 ± 7.5 | 73.1 ± 3.8 73.8 ± 3.6 72.1 ± 5.1 72.6 ± 4.9 | 80.6 ± 2.1 79.7 ± 1.7 79.3 ± 2.7 79.8 ± 2.4 | 72.6 ± 4.5 72.4 ± 3.6 72.8 ± 4.5 72.1 ± 5.1 | 89.3 ± 3.3
89.1 ± 1.9
89.6 ± 2.6
90.3 ± 3.0 | | Hier. | Graclus top_k DiffPool | 77.1 ± 7.2 76.3 ± 7.5 85.0 ± 10.3 | 73.0 ± 4.1
72.7 ± 4.1
75.1 ± 3.5 | 79.6 ± 2.0 79.7 ± 2.2 78.9 ± 2.3 | 72.2 ± 4.2
72.5 ± 4.6
72.6 ± 3.9 | 88.8 ± 3.2
87.6 ± 2.4
92.1 ± 2.6 | Runtimes of 200 epoch training procedures on a single GPU in comparison to the DeepGraphLibrary: PRs welcome | Dataset | Method | DGL
DB | DGL
GS | PyG | |----------|--------|-----------|-----------|-------| | Cora | GCN | 4.19s | 0.32s | 0.25s | | | GAT | 6.31s | 5.36s | 0.80s | | CiteSeer | GCN | 3.78s | 0.34s | 0.30s | | | GAT | 5.61s | 4.91s | 0.88s | | PubMed | GCN | 12.91s | 0.36s | 0.32s | | | GAT | 18.69s | 13.76s | 2.42s | | MUTAG | RGCN | 18.81s | 2.40s | 2.14s | - much faster than the inherently sequential Degree Bucketing (DB) approach - major GAT runtime improvements due to own optimized sparse softmax kernels